
I , -  5 LA-U R7- 
Approved for public release; 
distribution is unlimited. 

Title 

Author@) 

Submitted to 

Los Alamos 
N AT I 0 N A L LA 6 0 RAT 0 RY 

Capturing Network Traffic with a MAGNeT 

J. R. Hay, W. Feng, and M. K. Gardner 

The 5th Annual Linux Showcase & Conference (ALS 2001) 

Los Alamos National Laboratory, an affirmative actionhqual opportunity employer, is operated by the University of California for the US. 
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government 
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. 
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the 
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to 
publlsh; as an institution, however, the Laboratory does not endorse the vlewpoint of a publication or guarantee its technical correctness. 

Form 836 (1 0196) 

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM  87544
Phone:  (505)667-4448
E-mail:  lwwp@lanl.gov



Currept network traffic trace generation tools are able to monitor network 
traffic as it appears on the network, but are incapable of capturing traffic 
aa it progresses through a running protocol stack. Thus, the current 
generation of tools can not record true application traffic demands, and are 
incapable of capturing run-time protocol state information to help fine-tune 
network performance. They also lend no insi.ght into the modulating behavior 
of some protoco1.s (e.g., TCP), which has been shown to have significant impact 
on network performance. 

In this paper, we introduce the concept of a network application traffic trace 
generation tool. We discuss the need for such a tool, and the necessary 
modifications to the Linux kernel to enable such a tool. We also describe our 
own implementation, which we call the Monitor for Application-Generated 
Network Traffic (MAGNeT), and propose several ways in which MAGNeT can help 
increase network performance. 



Capturing Network Traffic with a MAGNeT 
Jeffrey R. Hay, Wu-chun Feng, Mark K. Gardner 

{feng, jrhay, rnkg}@lanl . gov 
Advanced Computing L,uboratory 
Los Alamos National Laboratory 

LAS Alamos, NM 87545 

Abstract 

Current network traffic trace generation tools are able to monitor network lraffic as it appears on the network, but are incapable of capturing 
traffic as it progresses through a running protocol stack. Thus, the current generation of tools can not record true application traffic demands, and 
are incapable of capturing run-time protocol state information to help fine-tune network performance. They also lend no insight into the modulating 
behavior of some protocols (e.g., TCP), which has been shown to have significant impact on network performance. 

In this paper, we introduce the concept of a network application traffic trace generation tool. We discuss the need for such a tool, and the 
necessary modifications to the Linux kernel to enable such a tool. We also describe our own implementation, which we call the Monitor for 
Application-Generated Network Traffic (MAGNeT), and propose several ways in which MAGNeT can help increase network performance. 

I. Introduction 
The networking community routinely uses traflic li- 

braries such as tcpl i b  [ 11, network traces such as those 
found at the Internet Traffic Archive [2] or the Internet 
Traffic Data Repository [3], or mathematical models of 
network behavior such as those discussed in [4] to test 
the performance of network-protocol enhancements and 
other network designs. 

However, such libraries, traces, and models are based 
on measurements made either by host-based tools such as 
tcpdurnp [SI and CoralReef [6]  or by global network- 
mapping tools such as and NLANR’s Network Analy- 
sis Infrastructure [7].  These tools are only capable of 
capturing traffic an application sends on the network uf- 
ter the traffic has passed through the operating system’s 
protocol stack (e-g., TCP/IP). Tinnakornsrisuphap and 
Feng [ 8-10] suggest that application traffic experiences 
significant modulation by the protocol stack before it is 
placed on the network. This implies that current tools 
are only able to capture traffic which has already been 
modulated by a protocol stack; the pre-modulation traf- 
fic patterns are unknown. 

In order to determine pre-modulation application traf- 
fic patterns, as well as determine the modulation experi- 
enced by traffic progression through protocols, we offer 
the Monitor for Application-Generated Network xraffic 
(MAGNeT). MAGNeT captures traffic (1) generated by 
applications, (2) passing through each layer (e.g., TCP 
to IP) of the Linux protocol stack, and (3) entering and 
leaving the network. Thus, MAGNeT differs from exist- 
ing tools in that it monitors traffic not only as it enters 
and leaves the network, but also at the application level 
and throughout the entire protocol stack. We are aware 
of two tools which attempt similar measurements. 

One tool that appears similar to MAGNeT is the TCP 

kernel monitor from Pittsburgh Supercomputing Cen- 
ter [ 111. However, MAGNeT differs from the TCP ker- 
nel monitor in several ways. First, MAGNeT is able to be 
used anywhere in the protocol stack, and with any proto- 
col (with very minor alterations to the protocol’s code), 
while PSC’s tool is a TCP-specific solution. Addition- 
ally, IMAGNeT monitors a superset of the data that the 
TCP kernel monitor does and operates under Linux 2.4.x, 
whereas the TCP kernel monitor currently works only on 
NetBSD. 

Holliger and Gross describe a method of extracting 
network bandwidth information per TCP connection un- 
der BSD in [ 121. While their research implementation 
appears to have a similar architecture to MAGNeT, it 
records only the specific information needed to compute 
estimated bandwidth for TCP connections because it was 
written primairly to advance their research in other, re- 
lated areas. In fact, Bolliger and Gross use results ob- 
tained from their tool to argue that network application 
performance could be improved with the establishment 
of a tool such as MAGNeT, which goes beyond their sim- 
ple data extraction. 

11. Software Architecture 
MAGNeT consists of both Linux kernel modifications 

and user application programs. In order to accurately 
mark events occurring throughout the protocol stack, 
MAGNeT must exist within the kernel; that is, there must 
be hooks in the protocol stack code to allow MAGNeT 
to record events at certain points. Running in the kernel 
also has the advantage of being able to acquire applica- 
tion traffic patterns with unmodified applications (e.g., 
there is no need to re-compile or re-link against a spe- 
cial instrumented network library). However, in order to 
provide the maximum amount of flexibility in data acqui- 
sition and processing, the ability to start and end traffic 



Kernel i User 

ilappllcationl 
n: 

Fig. 1. Overview of MAGNeT Operation 

monitoring should be controlled by the user. Therefore, 
while MAGNeT collects data in the kernel, the data is 
placed in a special memory region to be read and used 
by a separate user application program. 

The dataflow in a system running MAGNeT is shown 
in Figure 1. Unmodified applications run as normal 
on the host system,periodically making use of the net- 
work communication routines in the kernel (such as the 
send ( ) and recv ( ) system calls). These kernel rou- 
tines, in turn, make use of TCP, IP, or other network pro- 
tocols to transfer data on the network. Under MAGNeT, 
each time a kernel network stack event (send ( ) , enter- 
ing TCP, entering IP, etc.) occurs, the function mag- 
net -add ( ) is also called by the kernel. This procedure 
saves relevant data to a circular buffer in kernel space, 
which is then saved to disk by an user-level application 
program (magnet -read is provided with the MAG- 
NeT distribution for this purpose, but could easily be re- 
placed by a more sophisticated application). 

A. MAGNeT in Kernel Space 
The core functionality of MAGNeT is contained in the 

new kernel source file net /magnet /magnet. c. The 
function magnet-add ( ) , defined in magnet. c, adds 
a data point to a circular buffer that is pinned in physical 
memory. This function is designed to be very lightweight 
so that it can be called at several points in the protocol 
stack without inducing a significant amount of overhead 
in the protocol processing (see Section 111-E for an analy- 
sis). Other code in magnet . c sets up the circular buffer 
and the necessary hooks for the user-application program 
to read data from the buffer. In addition, a new item is 
added to the file space at /proc/net/magnet. This 
file may be read by any user to determine the current state 
and parameters of the MAGNeT kernel code. 

A.l Instrumentation Record 
The C header file include/linux/magnet . h 

contains the global definitions for the MAGNeT system. 

struct magnet-data { 
void *sockid; 
unsigned long long timestamp; 
unsigned int event; 
int size; 
union magnet-ext-data data; 

1; / *  struct magnet data * /  

Fig. 2. The MAGNeT Instrumentation Record 

At the heart of the system is the instrumentation record 
structure shown in Figure 2. 

The instrumentation record is the data structure that 
magnet-add ( ) adds to the kernel buffer at each in- 
strumentation point. sockid is a unique identifier for 
each connection stream', giving MAGNeT the ability of 
separating data traces into individual streams while pro- 
tecting user privacy. The timestamp field contains a 
CPU cycle count which serves as both a high-fidelity 
time measurement for MAGNeT traces, and a synchro- 
nization flag between the user and kernel MAGNeT pro- 
cesses (See Section IT-B.1). Valid values for the event 
field (e.g., MAGNET-IP-SEND) are given by an enum 
declaration at the beginning of magnet. h and indicate 
what type of the event is being recorded. size is the 
number of bytes transferred during a specific event.2 The 
data field (a optional field selected at kernel compila- 
tion time) is a union of various structures in which in- 
formation specific to particular protocols can be stored. 
This field provides a mechanism for MAGNeT to record 
protocol state information along with event transitions. 

A.2 Instrumented Events 
MAGNeT is designed to be extensible with regards to 

the specific events that are monitored. The current distri- 
bution instruments the general socket-handling code, the 
TCP layer, and the IP layer. Other protocols can be eas- 
ily instrumented by adding new MAGNeT event codes 
to the enum definition in magnet. h and placing calls 
to magnet-add ( ) at appropriate places in the proto- 
col stack. Thus, the mechanisms provided by MAGNeT 
(that is, generating application-level traces as well as in- 
tercepting protocol stack events) are available to all ex- 
isting and future Linux networking protocols. 

Our current MAGNeT distribution records events 
when the socket handling code receives data from an 
application, when the TCP layer receives data from the 
socket handling code, when the IP layer receives data 
from TCP, and, finally, when IP hands the data off to the 
network device driver. A similar set of events is recorded 
for the receive pathway. 

Without the optionally-compiled data field, MAG- 



struct magnet-tcp { 
/ *  data from "struct tcp-opt" in 

include/net/sock.h * /  

unsigned short source; 
/ *  TCP source port * /  
unsigned short dest; 
/ *  TCP destination port * /  

unsigned long snd-wnd; 
/ *  Expected receiver window * /  

unsigned long srtt; 
/ *  smothed round trip time << 3 * /  
unsigned long rto; 
/ *  retransmit timeout * /  

unsigned long packets_out; 
/ *  Packets which are "in flight" * /  
unsigned long retrans-out; 
/ *  Retransmitted packets out * /  

NeT records only the timestamp and associated data size 
for each transition between network stack layers. With 
the data field compiled in, MAGNeT records more ex- 
tensive data about the instantaneous state of the protocol 
being monitored. This data typically contains all proto- 
col header information as well as run-time protocol state 
variables which are not usually available outside of ex- 
perimental situations. As an example of the kind of in- 
formation stored within the data field, Figure 3 shows 
the union members for TCP and IP events. 

A.3 Event Loss 
Since the kernel portion of MAGNeT saves events to 

a fixed-sized buffer, there is a possibility that events may 
occur when the buffer is full. In this case, MAGNeT is 
unable to save the event. MAGNeT keeps track of the 
number of events not recorded, and reports this informa- 
tion as soon as possible (See Section 11-B.1). 

Our experience to date indicates that unrecorded in- 
strumentation records rarely occur during the monitor- 
ing of actual users. MAGNeT provides the capability of 
tuning its operation, trading between resource utilization 
and performance. As discussed in [13], with appropri- 
ately tuned values MAGNeT is able to record events with 
less than a 1% loss when a sender saturates a lOOMbps 
network for a sustained time. Since the majority of users 
do not approach continuous network-saturation levels, 
MAGNeT efficiently records virtually all application- 

unsigned lorig snd-ssthresh; 
/ *  Slow start size threshold * /  
unsigned long snd-cwnd; 
/ *  Sendina conaestion window * /  - generated network traffic. 
unsigned long rcv-wnd; 
/ *  Current receiver window * /  
unsigned long write-seq; 
/ *  Tailtl of data in send buffer * /  
unsigned long copied-seq; 
/ *  Head of yet unread data * /  

/ *  TCP flags*/ 
unsigned short fin : 1, syn : 1, rs t: : 1, 

B. MAGNeT in User Space 
The MAGNeT user interface is designed to be mod- 

ular; that is, as long as the MAGNeT API is followed, 
any application can be a MAGNeT user-level applica- 
tion. Thus, this section first discusses the basic elements 
required of a MAGNeT user-level application and then 
describes the user applications supplied with the current 
MAGNeT software distribution. 

psh:l,ack:l,urg:l,ece:l,cwr:l; 
3 ;  / *  struct magnet-tcp * /  B.1 UserKernel Interface and Synchroniza- 

tion 
struct magnet-ip I 
unsigned char version; 
unsigned char tos; 
unsigned short id; 
unsigned short frag-off; 
unsigned char ttl; 
unsigned char protocol; 

I ;  / *  struct magnet-ip * /  

Fig. 3. MAGNeT Extended Data for TCP and IP 

The MAGNeT additions to the kernel export the cir- 
cular buffer to user-space applications via kernelher 
shared memory. That is, a device file3 serves a an user- 
level handle to the kernel shared memory region. Open- 
ing this file causes Linux to create a mapping between the 
kernel memory region and the user address space. With 
this mapping in place, no additional kernel code is exe- 
cuted; the application program simply reads the shared 
memory and writes it to disk. 

Because the kernel and user processes share the same 
area of physical memory, they must have a means of syn- 
chronization. This is accomplished by using the time- 
stamp field of the instrumentation record as a synchro- 



Walt For 
Event to 

(Unsaved) += 1 

Fig. 4. MAGNeT Kernel Operation 

nization flag between the MAGNeT user and kernel pro- 
cesses, as shown in Figures 4 and 5 .  

Before writing to a slot in the circular buffer, the 
MAGNeT kernel code checks the value of the time- 
stamp field for that slot. A non-zero value indicates 
that the slot has not yet been copied to user space and 
that the kernel buffer is full. In this case, the kernel 
code increments a count of the number of instrumenta- 
tion records that could not be saved due to the buffer be- 
ing full. Otherwise, the kernel code writes a new instru- 
mentation record and advances its pointer to the next slot 
in the circular buffer. 

The user application accesses the same circular buffer 
via kernel-user shared memory. It also maintains a 
pointer to its current slot in the buffer. When the time- 
stamp field at this slot becomes non-zero, the appli- 
cation reads the entire record, saves it to disk, and sets 
the timestamp field back to zero to signal the kernel 
that the slot is once again available. It then advances its 
pointer to the next slot in the circular buffer. 

If the kernel has a non-zero count of unsaved events 
and buffer space becomes available (i.e., the time - 
stamp field of the kernel’s currently active slot is set 
to zero by the user application), the kernel writes a spe- 
cial instrumentation record with an event type of MAG- 
NETLOST and with the size field set to the number 
of instrumentation records that were not recorded. Thus, 
during post-processing of the data, the fact that events 
were lost is detected at the appropriate chronological 

No 

(buffer)-)timestamp = 0 Save Event 
(from bulfer, 

lo disk) 

Fig. 5 .  MAGNeT User Operation 

place in the data stream. 

B.2 MAGNeT System Information 
In order to accurately gauge the amount of time spent 

in protocol-stack layers, MAGNeT requires very high- 
fidelity timing. To this end, MAGNeT timestamp Val- 
ues are recorded in units of processor clock cycles by 
the kernel’s get-cycles ( ) function. In addition, the 
first record stored by MAGNeT in the circular buffer is 
a record of type MAGNET-SYSINFO, whose size field 
contains the processor clock speed estimated by the ker- 
nel at boot time. This information allows for easy conver- 
sion of MAGNeT timestamp values to wall-clock time. 

The MAGNET-SYSINFO event record also allows 
MAGNeT to be endian-aware. Since this field is guar- 
anteed to be the first record in the circular buffer every 
time the MAGNeT device file is opened, it will be the 
first record that the user-application reads. The value of 
the event field of this record lets data processing soft- 
ware determine if the records were saved on a big- or 
little-endian machine (e.g., if the records are saved to a 
file for later processing on a different machine). Specif- 
ically, MAGNET-SYSINFO is defined in magnet. h to 
have a value of 0x01234567. If the first record read by 
the data processor has an event field of this value, no 
endian translation is necessary. On the other hand, if the 
first record’s event field contains a different value (e.g., 
a value of Ox67452301), the file was saved on a machine 
with a different endian orientation then the processing 
machine, so endian translation is necessary. 

B.3 /proc/net/magnet 
The /proc /net/magnet file allows user applica- 

tions to determine the state of the MAGNeT kernel pro- 
cess. The existence of this file serves as proof that the 
MAGNeT code is active in the kernel. This file contains 
information such as the major and minor numbers for the 
MAGNeT shared memory device file, the size of the cir- 
cular buffer, and other information that may be useful to 



user-level applications. 

B.4 Current MAGNeT User Implementa- 
tion 

As provided in our current distribution of MAGNeT, 
the user interface consists of three programs, magnet - 
read, mkmagnet, and magnet-parse, along with a 
couple of scripts to ease automated traffic trace genera- 
tion and collection. 
magnet -read is the primary means of obtaining 

MAGNeT traffic traces; its function is to read the data 
from the kernel’s circular buffer. Our first version of 
magne t -read copied records out of the shared mem- 
ory and wrote them to a file on disk. We found, however, 
that this approach was unable to keep up with the de- 
mands of a simple test application that tries to saturate 
a 100-Mbps Ethernet network. Instead, the currenl ver- 
sion of magnet -read uses the memory-mapped VO 
features in the Linux kernel. Once an empty “binary 
trace file” exists, magnet-read maps this file into its 
memory space, and then saves data to disk by simply per- 
forming a memory copy between the kernel-user shared 
memory and the memory region mapped to the binary 
trace file. This approach reduces overhead significantly 
and allows MAGNeT to record data on even high-speed 
networks with little chance of record loss. The mkmag- 
net application creates and initializes the binary trace 
file prior to it being mapped into memory by magnet- 
read. Finally, magnet -parse, reads data collected 
by magnet -read and dumps a tab-delimited ASCII ta- 
ble of the collected data for further processing, perform- 
ing endian translation as necessary. 

The MAGNeT distribution also includes two shell 
scripts which allow network administrators to create an 
automated application-monitoring environment. mag- 
net. cron, the overall MAGNeT management script, 
ensures that the MAGNeT device file exists and that a 
binary trace file has been created by mkmagne t. Ad- 
ditionally, if invoked while magnet -read is running, 
magnet . cron terminates the current MAGNeT data 
collection session and calls magnet. copy to transfer 
the data to a remote archives4 Before exiting, mag- 
net. cron starts magnet -read as a background pro- 
cess to save network events to disk. Thus, the manage- 
ment script may be added as a crontab event (e.g., run 
everyday at midnight) to collect data on a diverse set of 
machines without requiring special action by the users of 
the network. 

111. MAGNeT Performance 
In this section, we determine the effect of running 

MAGNeT though a variety of tests. We compare over- 
all attainable bandwidth on a system running MACrNeT 
to that of a system running tcpdump as well as a sys- 

tem running no monitoring software. We also look at 
CPIJ utilization under these conditions, and at the effect 
of MAGNeT on real-time traffic streams such as multi- 
media traffic. We conclude the section with a brief dis- 
cussion of how the different design decisions made in 
MAGNeT and other monitors result in the observed per- 
formance differences. 

A. Elxperimental Environment 
We use a common environment for all the tests dis- 

cussed in this section. This environment consists of 
two identical dual 400-MHz Pentium 11s connected to 
each other via an Extreme Networks Summit 7i Giga- 
bit Ethernet switch. Each machine contains 128MB of 
RAM, ATA-33 IDE hard drives and both 100-Mbps (Net- 
Gear) and lOOOMbps (Alteon) Ethernet cards. All non- 
essential Linux services are disabled on the test ma- 
chines, and no extraneous traffic is allowed on the net- 
work. MAGNeT is set to record a minimal set of infor- 
mation per event (Le., the data field is not compiled into 
the MAGNeT build). 

B. Network Throughput 
As an indication of how much MAGNeT affects net- 

work applications, we measure the maximum data rate 
between a sender and receiver. We also measure the over- 
head of running tcpdump as a point of comparison. 

In total, we run six different configurations, each on 
100-Mbps and Gigabit Ethernet networks. The first con- 
figuration, our baseline, runs between two machines with 
stock Linux 2.4.3 kernels. The second configuration uses 
the same machines but with the MAGNeT patches in- 
stalled on both sender and receiver. Although present 
in the kernel, MAGNeT instrumentation records are not 
saved to disk. The third configuration is the same as the 
second except magnet-read runs on the receiver to 
drain the kernel-event buffer. The fourth configuration 
is also the same as the second except magnet-read 
runs on the sender. For the fifth and sixth configurations, 
we run tcpdump on either the sender or the receiver, 
with a stock Linux 2.4.3 kernel (i.e,, no MAGNeT code 
installed). For each trial we run netperf [14] on the 
sender to transmit data as fast as p ~ s s i b l e . ~  

Table I shows the results of our bandwidth experi- 
ments. Along with the mean, the width of the 95% con- 
fidence interval is given. As shown in this table, MAG- 
NeT never reduces the achievable network bandwidth by 
more than 4.5%. By comparison, while tcpdump has 
roughly the same impact on performance for current net- 
works, it suffers dramatically as network speeds increase. 
Thus, we conclude that MAGNeT is better able to adapt 
to tomorrow’s networking infrastructure than the current 
version of tcpdump. 

It is worth noting that these comparisons are not en- 



TABLE! I 
NETWORK THROUGHPUT REDUCTION 

Throughput % Reduction 
94.1 f 0.0 

/Configuration 
Throughput 
459.5 f 1.6 Linux 2.4.3 I 

94.1 f 0.1 
90.8 f 0.8 
90.7 f 0.9 

MAGNeTized 
magnet -read/rcv 
magnet -read/snd 

0.01 
3.56 
3.67 

t cpdumphcv 

Fast Ethernet (100Mbps) I Gigabit Ethernet (1000Mbps) 

452.5 f 1.8 
444.3 f 1.7 
440.2 f 2.1 

89.4 f 1.5 I 5.04 11 290.7 f 15.6 
89.4 f 0.8 5.42 343.2f 18.7 

tirely fair. As discussed in Section 111-F, MAGNeT and 
tcpdump are designed to record different (but simi- 
lar) sets of information. However, since no tool exists 
which captures the same information as MAGNeT, we 
use t cpdump as the closest commonly-available tool. 

By default (and as used in our experiments), tcp- 
dump stores the first 68 bytes of every packet. Dur- 
ing these tests, the MAGNeT per-event record size is 
24 bytes. However, since MAGNeT instruments the en- 
tire network stack, it records the packet’s transitions be- 
tween Application, TCP, and IP, as well as transmission 
on the network. Thus, although MAGNeT stores approx- 
imately 1/3 less data then t cpdump per event, it records 
at least 3 events per packet, as compared to tcpdump’s 
one record per packet. Hence, the total data saved by 
MAGNeT per packet is no less then 72 bytes, and may 
be significantly more (depending on the fragmentation to 
the data in the packet caused by the protocol). 

C. CPU Utilization 
Under Linux, n e t p e r f  estimates CPU load by cre- 

ating a low-priority process which increments a counter. 
This process, being the lowest priority task in the sys- 
tem, should only execute when the CPU has nothing else 
to execute, so the counter is only incremented when the 
CPU would otherwise be idle. Thus, a low counter value 
implies a high CPU utilization, and a high counter value 
implies low CPU utilization. Using this feature with the 
above set of tests, we estimate the additional CPU load 
incurred by both MAGNeT and tcpdump. The increase 
in CPU load, averaged over the sender and receiver, dur- 
ing the above tests is shown in Figure 6. 

As can be seen, MAGNeT uses proportionally less 
CPU than tcpdump, which is expected given the results 
of our bandwidth tests. Also apparent is a decrease in 
CPU utilization when moving from 100-Mbps to 1000- 
Mbps. This drop is a result of the fact that our Gigabit 
Ethernet cards perform interrupt coalescing by default. 
That is, they wait for several packets to arrive from the 

% Reduction 

1.53 
3.30 
4.19 

36.74 
25.30 

110 
- 100Mb/s - 
-1000Mb/s 

n I 
MAGNeT MAGNcTIrecv MAGNeTlscnd tcpdumplrecv tcpdumptsend 

Test Conducted 

Fig. 6. Average Percent Increase in CPU Utilization 

network before interrupting the CPU. Thus, the cost of 
servicing the network device interrupt is amortized over 
several packets. This reduces the total amount of work 
performed by the CPU, as shown in Figure 6. Had in- 
terrupt coalescing been disabled, the average CPU uti- 
lization for both MAGNeT and tcpdump would have 
increased. 

D. Streaming MAGNeT 
In order to determine what visible effect the opera- 

tion of MAGNeT has on streaming media we set up a 
web server on one of our test machines to stream an 8- 
minute, 5 1-second MPEG clip of Crocodile Dundee. We 
then viewed the clip with MAGNeT running only on the 
server, with MAGNeT executing only on the client, and 
with MAGNeT not executing at all. 

Our results are summarized in Figure 7. Note thatS 
most streaming MPEG clients buffer data to maintain a 
constant framerate. This fact causes frames-per-second 
to be an impercise measure of streaming network perfor- 
mance. Therefore, the metric we have chosen is the total 
wall-clock time taken for the entire clip to be sent to the 



0 10 20 M 40 50 80 70 BO 80 100 
Trial Number 

44 

Fig. 7. Streaming MAGNeT E€fects 

client. 
As can be seen, MAGNeT has minimal effect on 

MPEG streaming. Over 100 trials, the average time to 
stream the movie clip without MAGNeT is 46.02 sec- 
onds, with a 95% confidence interval of f0.07 seconds. 
To transfer the movie clip with MAGNeT running on the 
server took an average 46.07 seconds, and with MAG- 
NeT on the client, 46.05 seconds. (Both of the MAGNeT 
cases have a 95% confidence interval of f0.06 seconds.) 

E. Network Perturbation 
Adding CPU cycle-counting code in magnet -add ( 1 

allows us to determine the amount of time taken to save a 
single event to the buffer. In a similar manner (by instru- 
menting the relevant areas of magnet-read), we can 
determine the average time taken to save an event from 
the buffer to disk. The sum of these values is the amount 
of time taken by MAGNeT to record events. 

Our tests indicate magnet-add ( ) uses 556 cycles 
per recorded event while magnet-read uses 425 cy- 
cles. So, on our 400-MHz machines, MAGNeT takes 
(556 cycles + 425 cycles)/(400 Mcycles/second) = 
2.4 psec to record each event. However, on a 100- 
Mbps Ethernet, a minimal TCP packet (that is, a 
packet of 40-bytes) will take at least (40 bytes x 
8 bits/byte)/lOO Megabitskecond = 3.2 psec to trans- 
fer. This comparison suggests MAGNeT-induced distur- 
bances into TCP traffic streams should be quite small. 

I?. Design of tcpdunp vs. MAGNeT 
While tcpdump and MAGNeT are similar in that 

they are both monitors of network traffic, they are also 
very different in that they monitor different aspects of the 
traffic and are based on different design philosophies. 
tcpdump, like magnet -read, is an user-interface 

application relying on functionality contained in a lower 
layer. In this case, the lower layer is called libpcap, 

which has been successfully used with other applica- 
tions, such as CoralReef. The critical difference is that 
while MAGNeT operates largely within the Linux ker- 
nel, libpcap is implemented as a library working in 
user space under a variety of operating systems. 

The exact method used by libpcap to intercept net- 
work packets varies depending on the features available 
in the root operating system, but always involves a sys- 
tem call or other facility to cause a switch into kernel 
mode and a copy of memory from the kernel to the user- 
level library. This call-and-copy is repeated for every 
packet traveling across the interface being monitored. 
At high network speeds (and thus high packet-transfer 
rates), the overhead of copying each individual packet 
between kernel and user space becomes a significant bur- 
den. MAGNeT benefits from having code embedded in 
the kernel to aggregate multiple network packets into a 
single space which then is copied in bulk, thus amor- 
tizing the cost of the copy over multiple packets. This 
approach incurs less overhead but is not as portable as 
lil~pcap's method. 

Finally, we note that the kind of data collected by 
tcgdump and MAGNeT are not exactly the same. As 
used in the experiments in this paper? MAGNeT col- 
lects just packet generation time and data size. tcp- 
dump, on the other hand, collects packet time informa- 
tion along with a sampling of the actual data contained 
in the packet. MAGNeT ignores this data mostly out of 
privacy concerns. 

IV. Applications of MAGNeT 
MAGNeT provides network practitioners with the 

ability to discover true application traffic demands while 
maintaining application transparency. This ability has 
many practical applications, some of which we will dis- 
cuss in this section. 

A. Network Security 
A standard method of detecting network intrusion is 

to have an automated system continually watching net- 
work traffic patterns and flagging anomalous behavior 
for a human operator to investigate. This approach re- 
quires all traffic on the network to flow through a cen- 
tralized monitoring station, which not only introduces a 
single point of failure to the network but also provides 
a potential bottleneck that may reduce achieved network 
bandwidth significantly (while, at the same time, increas- 
ing network latency). 

MAGNeT provides an alternative solution. We have 
shown that MAGNeT, unlike tcpdurnp, runs almost 
transparently for most applications, even on high-speed 
networks. Thus, MAGNeT may be deployed on every 
computer in an installation. If this is the case, there is no 
need for all traffic to flow through a central monitoring 



machine. Instead, each machine may collect its own traf- 
fic patterns and then periodically have magnet. cron 
send its collected data to a central processor. This pro- 
cessor is then able to analyze campus-wide network ac- 
tivity, with a finer granularity than currently available.* 
Unlike current solutions, if for some reason the central 
processor goes down, the rest of the computers on the 
network are able to operate without difficulty. Thus, the 
problems of a single network traffic sink are eliminated. 

B. Protocol lhning and Troubleshooting 
With the optional data filed compiled in, MAGNeT 

has the ability to return snapshots of complete protocol 
state (information previously only available under sim- 
ulation environments) during execution of real applica- 
tions on real-world networks. This kind of data is a pow- 
erful tool for aiding the debugging and fine-tuning of net- 
work protocol implementations. 

C. Traffic Pattern Analysis 
One application of MAGNeT is to investigate differ- 

ences between the traffic generated by an application and 
that same traffic but after modulation by the protocol 
stack, i.e., when the traffic hits the network. An example 
of this kind of modulation is shown in Figure 8. This fig- 
ure is the MAGNeT trace of using FTP to send a Linux 
2.2.18 bzipped tar file from our facilities in Los Alamos, 
NM to a location in Dallas, TX. As can be seen by ex- 
amining the graph, the FTP application attempts to send 
lOKB segments of data every 1/5 of a second. How- 
ever, the Linux protocol stack (TCP and IP in the case 
of FTP) modulates this traffic pattern into approximately 
1500 byte packets at considerably shorter intervals. 

It may be assumed that since the maximum data size 
on an ethernet network is 1500 bytes, the protocol stack 
is simply modulating the data to this size to obtain valid 
ethernet traffic. However, if we send the traffic stream 
as it was delivered to the network through another TCP 
stack (this is exactly what network researchers do when 
they use a tcpdump-derived traffic trace as input to a 
network simulation), we again see modulation. Every 
successive run of network-delivered traffic through TCP 
further modulates the traffic, as shown in Table 11. The 
table reflects the average data size of output TCP pack- 
ets and the average time in seconds between output TCP 
packets, using the data stream from the previous TCP 
output as input. Likewise, Figure 9 shows the effect of 
successive TCP stacks on achieved bandwidth across the 
same WAN pathway used for the original FTP transfer. 

One real-life instance where traffic is subjected to mul- 
tiple TCP stacks is in the case of firewalls which break 
a TCP connection into two connections - one “inside” 
connection between the internal host and the firewall and 
one “outside” connection between the firewall and the 

lstTCP stack 
2nd TCP stack 
3rd TCP stack 
4th TCP stack 

12000 ’ 

1016 
919 
761 
723 

60 60.2 60.4 60.6 60.8 61 
Time (Seconds) 

Delivered to network - Application send0 call ......-_. 

Fig. 8. M A G N e T  FTP trace 

T A B L E  I1 
EFFECT OF MULTIPLE TCP STACKS 

I Trial I DataSize I Interpacketspacing I 
(set) 

Application 1 3284 1 0.124 
0.045 
0.037 
0.079 
0.122 

external world. Imagine two locations, AS1 and AS2, 
both have this kind of active firewall installed. This re- 
quires a FTP connection from a host within AS 1 to a host 
within AS2 to actually consist of three connections: (1) 
from the AS1 internal host to the AS1 firewall, (2) from 
the AS1 firewall to the AS2 ficewall (across the internet), 
and (3) from the AS2 firewall to the AS2 internal host. 
Thus, the traffic pattern generated by the FTP applica- 
tion passes through three different TCP stacks. 

As can be seen in Table 11, successive TCPs reduce the 
data size of each packet in an exponential fashion. In ad- 
dition, the first TCP stack (that is, the TCP stack used by 
the application) radically reduces the inter-packet spac- 
ing, while each successive TCP stack (e.g., the TCP 
stacks of a network simulation or active firewall) slowly 
increases the inter-packet delay. All of this has the ef- 
fect of drastically reducing the achieved bandwidth dur- 
ing actual transfers, as reflected in Figure 9. After just 
three TCP stacks, the achievable bandwidth has been re- 
duced by 76%. 

D. Application-Generated Trace Library 
Currently existing models of network traffic have been 

developed using network traffic traces gathered via tradi- 
tional network monitoring systems. These models are 
then used to develop new network protocols and net- 



22a t n 1 

Pass thiough TCP 

Fig. I). Effect of multiple TCP stacks 

working enhancements. 
However, the kind of results typified by Figure 8 indi- 

cate network traffic demands of applications are not ac- 
curately reflected by traffic on the network wire, since the 
traffic pattern has already been modified by the current 
network protocol. Hence, while current network models 
may accurately reflect current network-wire traffic, they 
are not useful in optimizing application communications. 

We have seen (in Section IV-C) that recursively pass- 
ing traffic through TCP stacks results in decreased net- 
work performance. Yet the current tools avaliable la net- 
work researchers (such as tcpdump) only allow traffic 
collection after that traffic has passed through at least one 
TCP stack. Thus, the results of simulations using this 
traffic data are corrupt; the input data has already been 
modulated. This is a critical element for developing next- 
generation high-speed network protocols. 

Traffic traces generated by MAGNeT provide a real- 
istic picture of the protocol-independent traffic demands 
generated by applications running on today’s networks. 
Thus, MAGNeT provides network researchers and de- 
velopers with a better understanding of the requirements 
of future networks. 

V. Future Work 
MAGNeT currently exists as a prototype implementa- 

tion, and as such, its user interface is not highly refined. 
We would like to improve the inter€ace by allowing the 
user to set various MAGNeT parameters (i-e., the kinds 
of events to be recorded, the size of the kernel buffer, 
etc.) at run-time rather than at kernel compile-time. This 
could be accomplished by making the current /proc 
file writable and would greatly increase the usability and 
flexibility of MAGNeT. 

Another potential area of improvement in MAGNeT 
is the mechanism used to store saved data from the ker- 
nel buffer to disk. As it is currently implemented, the 
mechanism works but requires a user well-versed in how 

to operate MAGNeT (or a script which takes care of the 
details for the user). A better approach may be to utilize 
kernel threads to perform all steps of the instrumentation. 
With this methodology, the need for the special device 
file, the file created by mkmagnet, and the kernelher 
shared memory would be eliminated. In addition, ker- 
nel threads may lower MAGNeT’s current low event loss 
rate by reducing the need for a context switch to save 
data. However, the execution of kernel threads could 
break the application-usage-pattern transparency which 
MAGNeT currently is able to achieve. Additionally, ker- 
nel threads may remove the ability of easily integrating 
MAGNeT data collection facilities into new user appli- 
cations. The use of kernel threads may be explored for 
future versions of MAGNeT, along with other options 
for improving this interface, such as the Turbo Packet 
scheme used by Alexey Kuznetsov to increase tcp-  
dump’s performance under Linux. 

Lastly, performing timing with the CPU cycle counter 
can be problematic on contemporary CPUs which are 
able to change their clock rate in response to power 
management policies. If the kernel could detect such 
a change, MAGNeT could easily hook into the clock- 
rate change detection code and output a new MAG- 
NET-SYS INFO event with the new timing information. 
This would keep timing relatively consistent across CPU 
clock-rate changes. However, there is currently no way 
for production Linux kernels to detect CPU clock rate 
changes at run-time. 

VI. Conclusion 
We have developed a new kind of monitor for 

the Linux networking community. Our Monitor for 
Application-Generated Network Traffic (MAGNeT) col- 
lects run-time data about the network protocol stack as 
well as application traffic demands before modulation 
by any protocol stack. In addition, MAGNeT is able to 
collect this data while maintaining user- and application 
transparency. Thus, MAGNeT may be used on live sys- 
tems to obtain real-world application traffic traces and 
protocol state information in production environments. 

This data may be used, among other things, for de- 
bugging existing protocol implementations, understand- 
ing possible performance degradation seen under various 
network architectures, designing new networking pro- 
tocols specifically to take advantage of true application 
traffic patterns, and developing more realistic models of 
network traffic. The data collection capabilities of MAG- 
NeT also have potential use in fields such as network se- 
curity which rely on a comprehensive understanding of 
the traffic existing in an institutional network. 

The combination of abilities offered by MAGNeT 
make it a valuable tool to network designers, imple- 
mentors, researchers, and administrators. We intend for 



MAGNeT development to continue and lead to further 
advances in high-performance networking. 

Availability 
A distribution of MAGNeT, consisting of the Linux 

2.4 kernel patch, the simple user-application program 
magnet -read, and supporting material, is available 
from httg: //www.lanl .gov/radiant under the 
GNU Public License (GPL). Also available on this site 
are other published and unpublished documents relating 
to MAGNeT. 

Notes 
lThe sockid field is, in fact, the run-time value of the pointer to 

the kernel’s status information for the specific connection. 
2A negative value in the size field reflects the error code returned 

by the function causing the event. 
3The major and minor numbers for this device are system specific 

and can be discovered by inspecting /proc/net/magnet. 
4Since magnet. copy is called while magnet-read is not run- 

ning, any traffic produced by the data archiving will not be captured 
by MAGNeT. This behavior can easily be changed by re-ordering the 
commands in magnet. cron. 

6The command used was “netperf -P 0 -c {local CPU 
index) -C {remote CPU index) -H {hostname}” 

60f  course, with 1000-Mbps networks, the time taken to send a 
minimal TCP packet is reduced by an order of magnitude. In this case, 
MAGNeT takes significantly longer to record an event then the trans- 
mission time. However, it is likely that Gigabit networks will be used 
with much faster machines then our test machines, thus reducing this 
discrepancy. 

’By utilizing the data field of the instrumentation record, MAG- 
NeT is able to capture much more detailed traces, but still not actual 
packet data. 

6Since MAGNeT never collects actual data (only traffic patterns), 
the privacy of each individual machine is maintained. 

gDynamic CPU clock changing is also an issue with many aspects 
of the Linux kernel. For instance, short delay loops in the kernel rely on 
z number of loops taking y amount of time to compute. This relation 
is also affected by CPU clock-rate changes. 

References 
P. Danzig and S. Jamin, “tcplib: A Library of TCP Internetwork 
Traffic Characteristics,” http : / / irl . eecs . umich. edu/ 
jamin/papers/tcplib/ tcplibtr .ps .Z,  1991. 
“The Internet Traffic Archive,” ht tp : / /ita . ee . lbl . gov/ 
html/traces.html. 
A. Kato, J. Murai, and S .  Katsuno, “An Internet Traffic Data 
Repository: The Architecture and the Design Policy,” in INET’99 
Proceedings. 
V. Paxson and S .  Floyd, “Wide-Area Traffic: The Failure of Pois- 
son Modeling,” IEEE/ACM Transactions on Networking, vol. 3, 
no. 3, pp. 226244, June 1995. 
“tcpdump,” ht tp : / /www . tcpdump . org. 
CAIDA, “CoralReef Software Suite,” http : / /www. caida . 
org/tools/measurement/coralreef. 
A.J. McCregor, H-W Braun, and J.A. Brown, “The NLANR 
Network Analysis Infrastructure,” IEEE Communications, May 
2000. 
P. Tinnakornsrisuphap, W. Feng, and I. Philp, “On the Bursti- 
ness of the TCP Congestion-Control Mechanism in a Distributed 
Computing System,” in Proc. of the Int’l Con$ on Dist. Conip. 
Sys., April 2000. 
W. Feng and P. Tinnakornsrisuphap, “The Adverse Impact of the 
TCP Congestion-Control Mechanism in Heterogeneous Comput- 
ing Systems:’ in Proc. of the Inr’l Conf: on Parallel Processing, 
August 2000. 

W. Feng and P. Tinnakornsrisuphap, “The Failure of TCP in 
High-Performance Computational Grids,” in Proc. of SC 2000: 
High-Performance Networking and Computing Con$, November 
2000. 
J. Semke, “PSC TCP Kernel Monitor,” Tech. Rep. CMU-PSC- 
TR-2000-0001, PSC/CMU, May 2000. 
J. Bolliger and R. Gross, “Bandwidth Monitoring for Network- 
Aware Applications,” Pmc. of the 10th Annual Int’l Symposium 
on High Performance Distributed Computing, August 2001. 
W. Feng, J. R. Hay, and M. K. Gardner, “MAGNeT Monitor for 
Application-Generated Network Traffic,” To appear in Proc. of 
the IOtli Annual Int’l Computer Communication and Networking 
Con$, October 2001. 
“Netperf,” http: //www.netperf .org. 


